Computing the stability diagram of the Trp-cage miniprotein.

نویسندگان

  • Dietmar Paschek
  • Sascha Hempel
  • Angel E García
چکیده

We report molecular dynamics simulations of the equilibrium folding/unfolding thermodynamics of an all-atom model of the Trp-cage miniprotein in explicit solvent. Simulations are used to sample the folding/unfolding free energy difference and its derivatives along 2 isochores. We model the DeltaG(u)(P,T) landscape using the simulation data and propose a stability diagram model for Trp-cage. We find the proposed diagram to exhibit features similar to globular proteins with increasing hydrostatic pressure destabilizing the native fold. The observed energy differences DeltaE(u) are roughly linearly temperature-dependent and approach DeltaE(u) = 0 with decreasing temperature, suggesting that the system approached the region of cold denaturation. In the low-temperature denatured state, the native helical secondary structure elements are largely preserved, whereas the protein conformation changes to an "open-clamp" configuration. A tighter packing of water around nonpolar sites, accompanied by an increasing solvent-accessible surface area of the unfolded ensemble, seems to stabilize the unfolded state at elevated pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV-resonance raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein.

Trp-cage, a synthetic 20 residue polypeptide, is proposed to be an ultrafast folding synthetic miniprotein which utilizes tertiary contacts to define its native conformation. We utilized UV resonance Raman spectroscopy (UVRS) with 204 and 229 nm excitation to follow its thermal melting. Our results indicate that Trp-cage melting is complex, and it is not a simple two-state process. Using 204 nm...

متن کامل

Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure.

Although hot, cold, and high pressure denaturation are well characterized, the possibility of negative pressure unfolding has received much less attention. Proteins under negative pressure, however, are important in applications such as medical ultrasound, and the survival of biopoloymers in the xylem and adjacent parenchyma cells of vascular plants. In addition, negative pressure unfolding is ...

متن کامل

The Trp-cage: optimizing the stability of a globular miniprotein.

The Trp-cage, as the smallest miniprotein, remains the subject of numerous computational and experimental studies of protein folding dynamics and pathways. The original Trp-cage (NLYIQWLKDGGPSSGRPPPS, Tm = 42 degrees C) can be significantly stabilized by mutations; melting points as high as 64 degrees C are reported. In helical portions of the structure, each allowed replacement of Leu, Ile, Ly...

متن کامل

Computational investigation of dynamical transitions in Trp-cage miniprotein powders

We investigate computationally the dynamical transitions in Trp-cage miniprotein powders, at three levels of hydration: 0.04, 0.26 and 0.4 g water/g protein. We identify two distinct temperatures where transitions in protein dynamics occur. Thermal motions are harmonic and independent of hydration level below Tlow ≈ 160 K, above which all powders exhibit harmonic behavior but with a different a...

متن کامل

Folding Trp-cage to NMR resolution native structure using a coarse-grained model

We develop a coarse-grained protein model with a simplified amino acid interaction potential. We perform discrete molecular dynamics folding simulations of a small 20 residue protein – Trp-cage – from a fully extended conformation. We demonstrate the ability of the Trp-cage model to consistently reach conformations within 2Å backbone root-mean-square distance (RMSD) from the corresponding NMR s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 46  شماره 

صفحات  -

تاریخ انتشار 2008